Preliminary results towards the mechanical characterization of cellulose nanofibers using HarmoniX mode atomic force microscopy
نویسندگان
چکیده
The characterization of mechanical properties cellulose based nanomaterials at the nanometer scale is fundamental in development and optimization a broad range technological products where these are used for their unique physical chemical properties. HarmoniX an atomic force microscopy (AFM) technique which takes advantage use T-shaped cantilever, torsion excited during surface scan tapping mode. This results torsional signal that can be analyzed real time to map, simultaneously topographic reconstruction, sample like elastic modulus, tip-sample adhesion, or energy dissipation indentation cycle. Here we report preliminary concerning capability characterize nanocellulose fibers from hazelnut tree shells previously separated matrix via treatment.
منابع مشابه
Atomic force microscopy characterization of cellulose nanocrystals.
Cellulose nanocrystals (CNCs) are gaining interest as a "green" nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs is performed using atomic f...
متن کاملMicro-Mechanical Characterization of Lung Tissue Using Atomic Force Microscopy
Matrix stiffness strongly influences growth, differentiation and function of adherent cells. On the macro scale the stiffness of tissues and organs within the human body span several orders of magnitude. Much less is known about how stiffness varies spatially within tissues, and what the scope and spatial scale of stiffness changes are in disease processes that result in tissue remodeling. To b...
متن کاملMechanical Characterisation of HeLa Cells using Atomic Force Microscopy
Recently, atomic force microscopy (AFM) has been shown to be a suitable tool for imaging biological structures and their modification, adding to accurate morphological and cytomechanical information. AFM is capable of simultaneous nanometer spatial resolution and piconewton force detection, allowing detailed study of a cell surface morphology and monitoring of cell-tip interactions. Modern AFM ...
متن کاملFourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation
The periodic impact force induced by the tip–sample contact in tapping mode atomic force microscopy (TM-AFM) gives rise to anharmonic oscillations of the sensing cantilever. These anharmonic signals can be understood with a model which goes beyond the common Hookian approximation: the cantilever is described as a multiple degree of freedom system. A theoretical analysis of the anharmonic signal...
متن کاملTapping mode atomic force microscopy in liquid
We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode AFhif in liquid. Acoustic modes in the liquid excite the canti1eve.r. On soft samples, e.g., biolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleation and Atmospheric Aerosols
سال: 2021
ISSN: ['0094-243X', '1551-7616', '1935-0465']
DOI: https://doi.org/10.1063/5.0068542